Mixed Finite Element Method for 2D Vector Maxwell’s Eigenvalue Problem in Anisotropic Media

نویسندگان

  • Wei Jiang
  • Na Liu
  • Yifa Tang
  • Qing Huo Liu
چکیده

It is well known that the conventional edge element method in solving vector Maxwell’s eigenvalue problem will lead to the presence of nonphysical zero eigenvalues. This paper uses the mixed finite element method to suppress the presence of these nonphysical zero eigenvalues for 2D vector Maxwell’s eigenvalue problem in anisotropic media. We introduce a Lagrangian multiplier to deal with the constraint of divergence-free condition. Our method is based on employing the first-order edge element basis functions to expand the electric field and linear nodal element basis functions to expand the Lagrangian multiplier. Our numerical experiments show that this method can successfully remove all nonphysical zero and nonzero eigenvalues. We verify that when the cavity has a connected perfect electric boundary, then there is no physical zero eigenvalue. Otherwise, the number of physical zero eigenvalues is one less than the number of disconnected perfect electric boundaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems

We present an iterative method to compute the Maxwell’s transmission eigenvalue problem which has importance in non-destructive testing of anisotropic materials. The transmission eigenvalue problem is first written as a quad-curl eigenvalue problem. Then we show that the real transmission eigenvalues are the roots of a non-linear function whose value is the generalized eigenvalue of a related s...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Parameter-dependent Parallel Block Sparse Arnoldi and Döhler Algorithms on Distributed Systems

We summarize the basics and first results of the analyses within our ZIB Bridge Project and give an outlook on further studies broadening the usage of hardware acceleration within the Finite Element Method (FEM) based solution of Maxwell’s equations. 1 Solving the Generalized Eigenvalue Problem The main focus of our project is on the solution of the eigenvalue problem originating from Maxwell’s...

متن کامل

A multi-level method for transmission eigenvalues of anisotropic media

In this paper, we propose a multi-level finite element method for the transmission eigenvalue problem of anisotropic media. The problem is non-standard and non-self-adjoint with important applications in inverse scattering theory. We employ a suitable finite element method to discretize the problem. The resulting generalized matrix eigenvalue problem is large, sparse and non-Hermitian. To compu...

متن کامل

A Mathematical Analysis of the Strip-Element Method for the Computation of Dispersion Curves of Guided Waves in Anisotropic Layered Media

Dispersion curves of elastic guided waves in plates can be efficiently computed by the StripElement Method. This method is based on a finite-element discretization in the thickness direction of the plate and leads to an eigenvalue problem relating frequencies to wavenumbers of the wave modes. In this paper we present a rigorous mathematical background of the Strip-Element Method for anisotropic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014